Raphael Röcken and Patrick Moloney
September 7, 2023
Why circularity is key to a sustainable energy transition
There can be no circular economy without clean energy and no energy transition without a circular economy. The two are intrinsically linked and depend on one another. We call this relationship the energy-circular economy nexus.
- Energy efficiency: Global energy demand is constantly growing and is expected to continue to grow. To reduce the primary energy demand, there is a continued need to gradually improve the energy efficiency of industrial processes with the aim of consuming as little energy as possible. This is likely to require both technology upgrades and process innovation to save energy by operating in a smarter way. The most suitable energy sources to fuel the remaining energy demand are sources which are aligned with the circular economy’s fundamental principles of reducing waste and consumption of finite resources. The good news is that several existing energy sources align with these principles.
- Renewable energy: Renewable energy should be the prioritised energy source for every company striving for circularity or circular products. Renewable energy includes both energy that can be generated from natural forces, such as solar and wind as well as energy from biomass, such as agricultural or forestry residues.These energy sources are circular because no finite resources are consumed when energy is produced from them. Both wind and solar are virtually infinite, and they are only used but not consumed during energy generation, i.e. the sun does not stop to shine because it shines on a solar panel. In contrast, the capacity of biological residues (such as biomass) is limited as they are consumed during the process of energy generation. Yet, with some time and effort biomass can be cultivated again and again.
- Waste heat and industrial symbiosis: Another way of producing ‘circular energy’ is from industrial processes that produce waste heat. For example, the IT equipment in data centres generates heat that require cooling. Instead of using additional electricity to cool data centres the waste heat can be used either internally or as heat sources in district heating systems to cover residential or industrial heat demand.However, focusing on energy efficiency and energy sources alone is not sufficient to solve the sustainability challenges of our current energy system which include resource scarcity, waste, and carbon emissions. Hence, the energy-circular economy nexus has a second dimension focused on circular solutions for the energy sector.
- Circular products, parts, and materials: Solar panels, wind turbines, batteries etc. should live up to circular principles. In practise, this means making products long-lasting, reusable, repairable, recyclable etc. However, this is only part of the solution. It must also be ensured that products actually re-enter the loop. This typically requires reverse logistics models including take-back schemes to provide manufacturers with access to existing products and components or at minimum secondary raw material.
- Circular technologies and processes: The energy sector also needs to develop and implement additional technologies and processes that allow for products, parts, and materials to re-enter the loop. An example is the wind turbine wings piling up in landfills because adequate reuse processes or recycling technologies do not yet exist at scale. Using existing knowledge and technologies from the energy sector and applying them in a new context can make a significant contribution towards increasing circularity.Another example is the innovative recycling companies that apply pyrolysis technology to recycle plastics. The largest fraction of the end product is earmarked raw material for new plastics. However, many of the current attempts to apply energy technology in a more circular context are still at early stages of development which leaves further opportunities for development and innovation.
- Circular strategies: Transforming the energy sector towards the much-needed circular model entails systemic change on a broad level from the choice of raw materials to design decisions, manufacturing processes, maintenance programs to recirculation at end-of-life. The list of issues to address is so long that many organisations find it difficult to figure out where to start. At the same time, they need to prioritise how to invest their resources which is why they need to develop targeted circular strategies.How to get started on circular strategies is explained in more detail in our previous article about circular materiality assessments.
Want to know more?
Raphael Röcken
Project Manager / Sustainability Manager
+45 51 61 10 16
Patrick Moloney
Director, Strategic Sustainability Consulting
+45 51 61 66 46